Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Yun Fu^{a,b}* and Da-Qi Wang^b

^aResearch Institute of Coordination Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ^bDepartment of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.049 wR factor = 0.144 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-Benzoylalanine

In the crystal structure of the title compound, $C_{10}H_{11}NO_3$, there are $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, connecting the molecules into planes parallel to the *bc* plane.

Comment

As a result of systematic studies on new complexes of metallic ions with amino-acid derivatives (Fu *et al.*, 2004), we have focused our attention on amino-acid derivatives. In this paper, we present an X-ray crystallographic analysis of the title compound, (I) (Fig. 1).

The title compound, (I), is an amino-acid derivative with a free carboxylic acid group. The torsion angles for O1-C1-C2-N1, C1-C2-N1-C4, C2-N1-C4-C5 and N1-C4-C5-C6 are 165.54 (15), -150.82 (18), 174.47 (14) and -32.4 (2)°, respectively. The hydrogen bond between the carboxylic acid group and the O atom of the acetyl group (Table 1) connects the molecules into an infinite chain along the *b* axis. The hydrogen bond between the amido N atom and the carboxylic C=O connects the chains into a plane parallel to the *bc* plane (Table 1 and Fig. 2). There are unequal distances for the C1-O1 [1.314 (4) Å] and C1=O2 [1.204 (3) Å] bonds, with unequal O1-C1-C2 [124.4 (2)°] and O2-C1-C2 [111.33 (17)°] angles. We could not detect

Figure 1

An *ORTEPIII* (Burnett & Johnson, 1996) view of the molecular structure of (I), showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as circles of arbitrary radius.

 ${\rm \textcircled{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 21 June 2005 Accepted 27 June 2005

Online 6 July 2005

any significant stacking interactions, the distances between planes being close to the sums of van der Waals radii.

Experimental

Compound (I) was synthesized according to the literature (Steiger, 1944). Crystals appropriate for data collection were obtained by slow evaporation of an ethanol solution at 293 K.

Crystal data

C ₁₀ H ₁₁ NO ₃	$D_x = 1.329 \text{ Mg m}^{-3}$
$M_r = 193.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2314
a = 9.263 (2) Å	reflections
b = 10.308 (3) Å	$\theta = 2.4 - 28.3^{\circ}$
c = 10.974 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 112.872 \ (3)^{\circ}$	T = 293 (2) K
$V = 965.5 (4) \text{ Å}^3$	Block, yellow
Z = 4	$0.39 \times 0.31 \times 0.27 \text{ mm}$

Data collection

Bruker SMART CCD area detector	1659 independent reflections
diffractometer	1352 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.049$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$
(SADABS; Bruker, 1997)	$h = -10 \rightarrow 11$
$T_{\min} = 0.962, T_{\max} = 0.974$	$k = -12 \rightarrow 11$
4307 measured reflections	$l = -13 \rightarrow 11$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0948P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 0.0352P]
$wR(F^2) = 0.144$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
1659 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
171 parameters	$\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$
All H-atom parameters refined	

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots O3^i$	0.93 (3)	1.74 (3)	2.604 (5)	154 (3)
$N1 - H2 \cdots O2^{ii}$	0.86 (2)	2.29 (2)	3.076 (5)	153 (2)

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1.

All H atoms were located in a difference map and refined freely; C-H distances are in the range 0.92(2)-1.04(3) Å.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve

Figure 2

A PLATON (Spek, 2003) view of the hydrogen bonding (dashed lines) in (I). H atoms not involved in hydrogen bonding have been omitted.

structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K.(1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Fu, A.-Y., Sun, Y.-L., Wang, D.-Q., Zhang, W.-S. & Ren, A.-K. (2004). Acta Cryst. E60, m701-m702.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Steiger R. E. (1944). J. Org. Chem. 9, 396-410.